Multiple vertex coverings by specified induced subgraphs

نویسندگان

  • Zoltán Füredi
  • Dhruv Mubayi
  • Douglas B. West
چکیده

Given graphs H1, . . . ,Hk, let f(H1, . . . ,Hk) be the minimum order of a graph G such that for each i, the induced copies of Hi in G cover V (G). We prove constructively that f(H1,H2) ≤ 2(n(H1) + n(H2) − 2); equality holds when H1 = H2 = Kn. We prove that f(H1,Kn) = n + 2 √ δ(H1)n + O(1) as n → ∞. We also determine f(K1,m−1,Kn) exactly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-sided coverings of colored complete bipartite graphs

Assume that the edges of a complete bipartite graph K(A,B) are colored with r colors. In this paper we study coverings of B by vertex disjoint monochromatic cycles, connected matchings, and connected subgraphs. These problems occur in several applications.

متن کامل

Containment relations in split graphs

A graph containment problem is to decide whether one graph can be modified into some other graph by using a number of specified graph operations. We consider edge deletions, edge contractions, vertex deletions and vertex dissolutions as possible graph operations permitted. By allowing any combination of these four operations we capture the following ten problems: testing on (induced) minors, (i...

متن کامل

The chromatic covering number of a graph

Following [1], we investigate the problem of covering a graph G with induced subgraphs G1, . . . , Gk of possibly smaller chromatic number, but such that for every vertex u of G, the sum of reciproquals of the chromatic numbers of the Gi’s containing u is at least 1. The existence of such “chromatic coverings” provides some bounds on the chromatic number of G.

متن کامل

The parameterised complexity of counting even and odd induced subgraphs

We consider the problem of counting, in a given graph, the number of induced k-vertex subgraphs which have an even number of edges, and also the complementary problem of counting the k-vertex induced subgraphs having an odd number of edges. We demonstrate that both problems are #W[1]-hard when parameterised by k, in fact proving a somewhat stronger result about counting subgraphs with a propert...

متن کامل

TOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS

Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2000